Data Science Trends & Salaries in 2023

<p>Data science is one of the coolest fields in recent years. Many people from different backgrounds have transitioned into this field. But, is this trend still ongoing?</p> <p>Today, we&rsquo;ll handle the data science salaries 2023 dataset and explore trends in data science with data visualization techniques. Here are topics we&rsquo;ll cover in this blog:</p> <ul> <li>Top 10 job titles in 2023</li> <li>Experience levels in data science</li> <li>Employment types</li> <li>Salaries by job titles</li> <li>Salaries by employment types</li> <li>Salaries by work years</li> </ul> <p>Let&rsquo;s start out by loading the dataset.</p> <h1>Loading the Dataset</h1> <p>The dataset we&rsquo;ll be using is the&nbsp;<a href="https://www.kaggle.com/datasets/arnabchaki/data-science-salaries-2023" rel="noopener ugc nofollow" target="_blank">data science salaries 2023</a>&nbsp;dataset on Kaggle.</p> <p><img alt="" src="https://miro.medium.com/v2/resize:fit:630/1*dC2n4hmuQgWnsEUDkzTWEg.png" style="height:412px; width:700px" /></p> <p><a href="https://www.kaggle.com/datasets/arnabchaki/data-science-salaries-2023" rel="noopener ugc nofollow" target="_blank">The data science salaries 2023 dataset</a></p> <p>What we&rsquo;ll do first is load this dataset with Pandas. This library is an awesome library for performing data manipulation.</p> <pre> import pandas as pd df=pd.read_csv(&#39;ds_salaries.csv&#39;)</pre> <p>Ok, we have loaded the dataset. Let&rsquo;s go ahead and try to understand the dataset using several methods in Pandas.</p> <p><a href="https://levelup.gitconnected.com/data-science-trends-salaries-in-2023-57b75df39d32">Read More</a></p>