Proving the Squeeze Theorem using the Epsilon Delta Definition for the Limit

<p>Out of the many techniques there are for solving limits, the squeeze theorem is a fairly famous theorem that has the ability to evaluate certain limits by comparing with other functions. For those who do not know the squeeze theorem, it states the following:</p> <p>Let&nbsp;<em>A</em>&nbsp;be some domain containing the point&nbsp;<em>c</em>, and let&nbsp;<em>f</em>,&nbsp;<em>g</em>, and&nbsp;<em>h</em>&nbsp;be defined on this common domain (except possibly at&nbsp;<em>c</em>). Suppose that for every&nbsp;<em>x</em>&nbsp;in A,&nbsp;<em>f</em>(<em>x</em>) &le;&nbsp;<em>g</em>(<em>x</em>) &le;&nbsp;<em>h</em>(<em>x</em>). Then, if lim(<em>x</em>&nbsp;&rarr;&nbsp;<em>c</em>)&nbsp;<em>f</em>(<em>x</em>) = lim(<em>x</em>&nbsp;&rarr;&nbsp;<em>c</em>)&nbsp;<em>h</em>(<em>x</em>) =&nbsp;<em>L</em>, it follows that lim(<em>x</em>&nbsp;&rarr;&nbsp;<em>c</em>)&nbsp;<em>g</em>(<em>x</em>) =&nbsp;<em>L</em>.</p> <p>In this post, I will be going through a simple proof of this theorem using the epsilon delta definition for limits, and will finish with a simple application of this theorem.</p> <p><a href="https://medium.com/@2305sakake/proving-the-squeeze-theorem-using-the-epsilon-delta-definition-for-the-limit-5c06eaf13e99"><strong>Read More</strong></a></p>