Introduction to “Partition” in “Apache Spark”

<h1>What is the &ldquo;Importance&rdquo; of &ldquo;Partition&rdquo;?</h1> <ul> <li><strong>&ldquo;Apache Spark</strong>&rdquo; is known for its &ldquo;<strong>Speed</strong>&rdquo;. The &ldquo;<strong>Fast Speed</strong>&rdquo; of &ldquo;<strong>Computing</strong>&rdquo; comes from the &ldquo;<strong>Parallel Processing</strong>&rdquo;.</li> <li><strong>&ldquo;Partition</strong>&rdquo; is the &ldquo;<strong>Key</strong>&rdquo; for &ldquo;<strong>Parallel Processing</strong>&rdquo;.</li> <li>If the &ldquo;<strong>Data</strong>&rdquo;, to work with, is &ldquo;<strong>Partitioned</strong>&rdquo; in a &ldquo;<strong>Proper Way</strong>&rdquo; then the &ldquo;<strong>Query Performance</strong>&rdquo; on that &ldquo;<strong>Data</strong>&rdquo; would be &ldquo;<strong>Improved</strong>&rdquo; as the &ldquo;<strong>Parallel Processing</strong>&rdquo; will be &ldquo;<strong>Triggered</strong>&rdquo; &ldquo;<strong>Effectively</strong>&rdquo;.</li> <li>If the &ldquo;<strong>Data</strong>&rdquo;, to work with, is &ldquo;<strong>Not Partitioned</strong>&rdquo; in a &ldquo;<strong>Proper Way</strong>&rdquo; then the &ldquo;<strong>Distributed Framework</strong>&rdquo; of &ldquo;<strong>Apache Spark</strong>&rdquo; is &ldquo;<strong>Not</strong>&rdquo; being used &ldquo;<strong>Effectively</strong>&rdquo;.</li> <li>So, &ldquo;<strong>Partition</strong>&rdquo; plays an &ldquo;<strong>Important Role</strong>&rdquo; in the following -<br /> <strong>1</strong>.&nbsp;<strong>Performance Improvement<br /> 2. Error Handling<br /> 3. Debugging</strong></li> </ul> <p><a href="https://oindrila-chakraborty88.medium.com/introduction-to-partition-in-apache-spark-66e005c6e15d"><strong>Learn More</strong></a></p>
Tags: Apache Spark