Overfitting, Underfitting, and Regularization

<p>Let&rsquo;s say you have a&nbsp;<a href="http://bit.ly/quaesita_emperorm" rel="noopener ugc nofollow" target="_blank">model</a>&nbsp;that is as good as you&rsquo;re going to get for the information you have.</p> <p>To have an even better model, you need better&nbsp;<a href="http://bit.ly/quaesita_hist" rel="noopener ugc nofollow" target="_blank">data</a>. In other words, more data (quantity) or&nbsp;<em>more relevant</em>&nbsp;data (quality).</p> <p>When I say as&nbsp;<em>good&nbsp;</em>as you&rsquo;re going to get, I mean in &ldquo;good&rdquo; terms of&nbsp;<a href="http://bit.ly/quaesita_msefav" rel="noopener ugc nofollow" target="_blank">MSE</a>&nbsp;performance on data your model hasn&rsquo;t seen before. (It&rsquo;s supposed to&nbsp;<a href="http://bit.ly/quaesita_parrot" rel="noopener ugc nofollow" target="_blank"><em>pre</em>dict</a>, not&nbsp;<em>post</em>dict.) You&rsquo;ve done a perfect job of getting what you can from the information you have &mdash; the rest is error you can&rsquo;t do anything about with your information.</p> <p><a href="https://towardsdatascience.com/overfitting-underfitting-and-regularization-7f83dd998a62"><strong>Visit Now</strong></a></p>