Master Data Analysis using Trustworthy Databases
<p>Python is an excellent programming language for beginners to handle and analyze data. We’ll also talk about how to find relevant data sources and a bit about statistical testing. Let’s break this down into a few steps:</p>
<h1>Step 1: Finding Relevant and Trustworthy Databases</h1>
<p>Depending on your field, there are many places where you can find datasets. For instance, some common data repositories are <a href="https://archive.ics.uci.edu/" rel="noopener ugc nofollow" target="_blank">UCI Machine Learning Repository</a>, <a href="https://www.kaggle.com/datasets" rel="noopener ugc nofollow" target="_blank">Kaggle</a>, <a href="https://datasetsearch.research.google.com/" rel="noopener ugc nofollow" target="_blank">Google Dataset Search</a>, and Government databases (e.g., <a href="https://data.gov/" rel="noopener ugc nofollow" target="_blank">data.gov</a>, <a href="https://ec.europa.eu/eurostat/data/database" rel="noopener ugc nofollow" target="_blank">Eurostat</a>).</p>
<p>Make sure to verify the credibility of the data source and its relevance to your field. I will tell you how to do that in the last section of this article.</p>
<p>Also, note the data format (CSV, JSON, SQL, etc.). CSV is the simplest and most common format.</p>
<h1>Step 2: Collecting the Data in a Table</h1>
<p>Let’s use Python’s <code>pandas</code> library to handle our data.</p>
<p>First, let’s import <a href="https://pandas.pydata.org/" rel="noopener ugc nofollow" target="_blank">pandas</a>. If you don’t have it, install it via pip:</p>
<pre>
pip install pandas</pre>
<p>Then, in your Python script, do the following:</p>
<pre>
import pandas as pd</pre>
<p>Assuming we have a CSV file named <code>my_data.csv</code>, we can load this into a pandas DataFrame (which is essentially a table) like so:</p>
<pre>
df = pd.read_csv('my_data.csv')</pre>
<p>You can visualize the first 5 lines of your dataframe using</p>
<p><a href="https://levelup.gitconnected.com/master-data-analysis-using-trustworthy-databases-15d83c7d084e">Read More</a></p>