A New Generation of Climate Models

<p>As we embark on the third year of&nbsp;<a href="https://m2lines.github.io/" rel="noopener ugc nofollow" target="_blank">M&sup2;LInES</a>, we want to share our progress and what comes next.</p> <p><strong>M&sup2;LInES&rsquo; mission is to improve coupled climate models by reimagining physics model development through innovative use of data and AI.</strong>&nbsp;We aim to accelerate the pace of climate model development by learning physics from data with scientific machine learning, and ultimately enhance climate model fidelity and reliability for future projections.</p> <p>As we continue to develop and generalize AI-enhanced models of ocean, sea-ice, and atmospheric processes from data, we can now begin to assess their impact on the large-scale climate in a suite of global model configurations.</p> <p>Climate models are known to have stubborn biases&nbsp;<em>(model error relative to observations)</em>&nbsp;due to incorrect representations of unresolved physics. We can now demonstrate in&nbsp;<strong>GFDL&nbsp;OM4</strong>,&nbsp;<strong>Global Ocean and Sea Ice Model at 1/4 degree horizontal resolution:</strong></p> <p><a href="https://medium.com/@lz1955/a-new-generation-of-climate-models-aefd851d47bd">Website</a></p>
Tags: M²LInES GFDL OM4